bet365体育在线-bet365游戏论坛网_凱旋門百家乐娱乐城_全讯网社区 (中国)·官方网站

國(境)外文教專家系列講座一百六十一講-比薩大學Dario A. Bini教授:Solving structured matrix equations encountered in the analysis of stochastic processes

發布時間:2022-05-18 閱讀: 64 添加: 管理員

一、主講人介紹:Dario A. Bini

Dario A. Bini,意大利比薩大學數學院教授,主要從事馬爾可夫鏈及排隊問題數值解、矩陣方程數值解法、結構化矩陣計算、幾何矩陣均值及其算法。Dario A. Bini教授在Numerische MathematikMathematics of ComputationSIAM Journal on Scientific ComputingSIAM Journal on Matrix Analysis and ApplicationsIMA Journal of Numerical AnalysisNumerical Linear Algebra with Applications等計算數學國際頂尖和權威期刊發表論文200余篇,出版Numerical Solution of Algebraic Riccati EquationsNumerical Methods for Structured Markov Chains等計算數學論著7余篇。曾擔任SIAM J. Matrix Analysis Appl.Electronic Transactions on Numerical AnalysisElectronic Journal of Linear Algebra等計算數學國際頂尖以及權威期刊編委。

 

二、講座信息

講座摘要:

We consider the problem of solving matrix equations of the kind A_1 X^2+A_0X+A_(-1)=X , where the coefficients  A_r ,r=-1,0,1, are matrices having specific structures, and X is the unknown matrix. The solution of interest is the one that has some minimality properties, say, it has a minimal spectral radius or has nonnegative entries with minimal value. This kind of problem is encountered in the solution of Quasi-Birth-Death processes, a general framework that models real-world problems in terms of Markov chains. In this talk, after presenting and motivating the interest of this class of equations, we investigate some computational issues encountered in their solution. For this class of problems, the coefficients A_r ,r=-1,0,1 ,  are semi-infinite Quasi-Toeplitz (QT) matrices. We give conditions under which the class of QT matrices is a Banach algebra, that is, a vector space closed under multiplication, endowed with a norm that makes it a Banach space. We give conditions under which the sought solution, say the minimal nonnegative one, is still a QT matrix, and describe and analyze  algorithms for its effective computation. Finally, by means of some numerical experiments performed with the CQT Matlab Toolbox, we show the effectiveness of our algorithms

講座時間:526日(星期四)13:30-14:30

騰訊會議號:142-518-059

 

歡迎大家積極參加!

 

 

國際合作與交流處

數學科學學院  

2022518  


? 校址:青島市嶗山區松嶺路238號 郵編:266100 魯ICP備05002467號-1? 版權所有?中國海洋大學 ?
沙坪坝区| 喜达百家乐官网的玩法技巧和规则 | 反赌百家乐官网的玩法技巧和规则| 百家乐发牌铲| 狮威百家乐的玩法技巧和规则| 大发888真人真钱赌博| 天天百家乐官网游戏| 李雷雷百家乐官网的奥妙| 威尼斯人娱乐场 新世纪| 棋牌百家乐官网怎么玩| 百家乐最佳公式| 德州扑克大小| 澳门百家乐官网赌场娱乐网规则| 亚洲百家乐论坛| 赌球赔率| 百家乐官网投注技巧建议| 做生意大门方位风水| 大发888提款| 视频百家乐官网赢钱| 线上百家乐是如何作弊| 百家乐官网在线怎么玩| 百家乐园sun811| 琼海市| 百家乐长龙有几个| 百家乐稳赚秘籍| 网络百家乐可信吗| 澳门赌场视频| 百家乐赌假的工具| 爱赢娱乐城开户| 澳门百家乐官网论坛及玩法| 大发888游戏下载官方| 神农架林区| 百家乐平台导航| 百家乐官网技术方式| 百家乐波音平台导航网| 澳门百家乐官网死局| 百家乐赌场现金网| 百家乐官网手机投注| 在线百家乐游戏软件| 凯旋门百家乐官网技巧| 百家乐注册彩金|